Hydrogenolysis of Glycerol to 1,2-Propanediol and Ethylene Glycol over Ru-Co/ZrO2 Catalysts

نویسندگان

  • Jian Feng
  • Youquan Zhang
  • Wei Xiong
  • Hao Ding
چکیده

A series of ZrO2 supported Ru-Co bimetallic catalysts were prepared and evaluated for the hydrogenolysis of glycerol. The Ru-Co/ZrO2 bimetallic catalyst combines the advantages of both Ru and Co, exhibiting high activity and good selectivity to 1,2-propanediol. The X-ray diffraction (XRD) and TEM results show that higher calcination temperature leads to lower reducibility of cobalt oxides and larger metal particle size, which is responsible for the decrease of glycerol conversion. Increasing the reduction temperature causes an inhibition effect on the catalytic activity, but it is beneficial to promote the 1,2-propanediol selectivity. The low temperature (<300 ̋C) reduction can prevent the growth of metal particles, resulting in higher activity. Co oxide is an important component for the good performance of Ru-Co/ZrO2. The reaction temperature, hydrogen pressure, and glycerol concentration have significant effects on the catalytic performance of the Ru-Co/ZrO2 catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts.

Ruthenium (Ru) supported on activated carbon (AC) and carbon nanotubes (CNTs) was carried out in the hydrogenolysis of sorbitol to ethylene glycol (EG) and 1,2-propanediol (1,2-PD) under the promotion of tungsten (WOx) species and different bases. Their catalytic activities and glycols selectivities strongly depended on the support properties and location of Ru on CNTs, owning to the altered me...

متن کامل

Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: Effects of Catalyst Preparation and Reaction Conditions

Crude glycerol from biodiesel production is a biobased material capable of co-producing biofuels and chemicals. This study aimed to develop a line of Ni catalysts supported on cerium–magnesium (Ce–Mg) to improve the process efficiency of glycerol hydrogenolysis for ethanol and 1,2-propanediol (1,2-PDO). Results showed that catalytic activity was greatly improved by changing the preparation meth...

متن کامل

Aqueous-Phase Hydrogenolysis of Glycerol over Re Promoted Ru Catalysts Encapuslated in Porous Silica Nanoparticles

Activity improvement of Ru-based catalysts is needed for efficient production of valuable chemicals from glycerol hydrogenolysis. In this work, a series of Re promoted Ru catalysts encapuslated in porous silica nanoparticles (denoted as Re-Ru@SiO₂) were prepared by coating silica onto the surface of chemically reduced Ru-polyvinylpyrrolidone colloids, and were used to catalyze the conversion of...

متن کامل

Understanding the Reaction Mechanism of Glycerol Hydrogenolysis over a CuCr2 O4 Catalyst.

The reaction mechanism of glycerol hydrogenolysis to 1,2-propanediol over a spinel CuCr2 O4 catalyst was investigated by using DFT calculations. Theoretical models were developed from the results of experimental characterization. Adsorption configurations and energetics of the reactant, intermediates, final product, and transition states were calculated on Cu(1 1 1) and CuCr2 O4 (1 0 0). Based ...

متن کامل

Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al2O3 Catalyst

Ni-based catalysts as replacement for noble metal catalysts are of particular interest in the catalytic conversion of biomass due to their cheap and satisfactory catalytic activity. The Ni/SiO2 catalyst has been studied for the hydrogenolysis of glycerol, and doping with phosphorus (P) found to improve the catalytic performance significantly because of the formation of Ni2P alloys. However, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016